
The latter shows that the critical values of the wave number a, become larger as ~ de- 
creases, which means that perturbations of smaller scale can cause instability, which itself 
is due to reduced thickness of the region of unstable stratification. 

Heterogeneous reaction or loss of reagent proportional to the concentration at the 
lower boundary, as represented by (1.8c) and (3.2c), will have relatively little effect on 
the convective stability. The family of R,(~) curves for values of the Sherwood number be- 
tween 0 and ~ lles in the range between the R,(~) curves corresponding to the boundary con- 
ditions of (l.8a), (3.2a) and (l.8b), (3.2b) for e = 0. 

NOTATION 

v, infiltration rate; C, Co, C (~ , current reagent concentration, equilibrium value, 
and dimensional value at upper boundary; p, convective correction to pressure; t, time; g, 
acceleration due to gravity; e, vertical unit vector; ~ = (i/0o)(~0/~C)T,p, coefficient re- 
lating density to concentration; K, permeability; m, porosity; ~, D, kina~tlc viscosity and 
diffusion constant; k, rate constant of homogeneous reaction; ~, rate constant for hetero- 
geneous reaction and mass transfer; w(z), n(z), amplitudes of normal velocity and concentra- 
tion perturbations; a~, a2, wave numbers for perturbations along x and y axes, a a  a + a 2  a = 
a 2 ;  ~, perturbation decrement. 
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THREE-DIMENSIONAL POTENTIALS FOR THE TELEGRAPHERS' EQUATION AND 

THEIR APPLICATION TO BOUNDARY-VALUE HEAT-CONDUCTION PROBLEMS 

I. A. Novlkov UDC 517.947.42:536.24.02 

Three-dimenslonal potentials for the telegraphers' equation are introduced and 
used to reduce boundary-value heat-conductlon problems to integrodlfferentlal 
equations of the second kind. 

In recent years the hyperbolic heat-conductlon equation has been used to solve various 
kinds of heat-conductlon and thermoelastlcity prohlems [i, 2]. Therefore, it has become 
necessary to create the mathem~tlcal apparatus for solving direct and inverse heat-c0nductlon 
problems based on the hyperbolic equation. With this in mind we generalize the potential 
method to the case of the telegraphers' equation. 

Three-Dimensional Potentials for the Telegraphers' Equation. We consider the homogene- 
ous telegraphers' equation with constant coefficients 

__ 1__ O~u (t, Mo) I Ou (t, Mo) , du (t,  Mo)+Au=O (1) 
c a Ot 2 a Ot ' 

and zero initial conditions 

u (o. ,~%) = a .  (o, Mo) ,a t  = o (2) 
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in an arbitrary simply connected domain D(Mo6D) bounded by a smooth surface r = D- D. In 
the following discussion we denote Laplace transforms of various functions by the correspond- 
ing capital letters. Taking account of (2) the Laplace transform of Eq. (I) becomes 

A u  (p, Mo) - -  ~ - -  ~ U (p, Mo)=O. (3) 

It is known [3] that in the domain of ellipticity of Eq. (3) three types of potentials can 
be introduced: a single-layer potential ~a, a double-layer potential ~=, and a volume 
potential $3. In the three-dlmensional case they have the following form [3]: 

~'(P' Mo)= J'/:I ~F,(p, M) exp(--rs/c)4~(r dS, (4) 

4;r l Or ~ ' ( P ' M ) [  1 O---n- -7 ] q~,(p, Mo)=- -  F �9 q- s/c e xp ( - - r s / c )dS ,  (5) 

q~s(P, Mo)= J 'Jf  ~F3(P' M) exp(--rs/c)  dV, ( 6 )  
4nr 

where s - /(p + ca/2u) = --b =, b = c=~ + 4u=d/ca/2a, n is the normal directed into domain D 
from point M on the surface F, r - [MMol is the distance from point M on the domain boundary 
to point M@ED, and the arbitrary continuous functions Tk(P, M) are the source densities for 
the corresponding potentials and depend on p as on a parameter. In a volume potential the 
integration is performed either over domain D or over the domain Rs -- D external to it, de- 
pending on the problem under consideration. In passing through the surface F the potential 
(5) has a discontinuity; potential (4) remains continuous, but its normal derivative has a 
discontinuity [3] 

oq~ (p, mo) ~', (p, Mo) ar (p, Mo) 
Otz o = ~ 2 r On o ' M~ E F, 

q ~  (p, Mo) = + v~ (p, Mo) - _ § r (p, Mo), Mo E f, 
2 

(4a) 

(5a) 

where the plus and minus signs indicate the limiting values of the corresponding functions 
as point M@ approaches the boundary r from the inside and from the outside; no is the inward 
normal to the boundary r at point Mo. The volume potential (6) is a twice continuously dif- 
ferentiable function in the domain of integration and satisfies the equation 

A~s-- ~ - - F  p d ~3 ~--~s(P,  M0). (6a) 
a 

Outside the domain of in tegra t ion  the potent ia l  (6) sa t i s f ies  Eq. (3).  

We take the inverse transforms of Eqs. (4)-(6), using analytic continuation of the 
transforms [9], the convolution theorem, the known inverse transform of F(s) [4], and the 
principle of causality. The single- and double-layer potentials go over respectively into 
the functions ~m(t, Mo) (m = i, 2): 

t 

r (,, . , ,o l :  " ( , - - - '  f., ( , - , ,  ,,,, (7) 

Here the ~m(t, M) are arbitrary functions; fx is the solution for a unit instantaneous source 
and is equal to [5] 

[~(t, M, Mo) exp(--c-t ,2a) 6(t--r..'c) 4 a r - -  b E t - -  (8) 
. . . .  4.~c l~ t 2 - -  r~-/c a ' 

and f= is the solution for a unit instantaneous dipole 

[-'(t' M' M~  4~1 Or exp(__c.t/2a) { ' r 2 -~ rc c -v-' E ( t - - - c r  ) rb~ x (8a) 
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[--2 l~ (b l e t  z -  rZ/ca - - )  _:_blo (b l tz - r.,:.cZ) / ] / ~ 2 ] 1  " X (8a) 
L V ' l Z _  r~ /c  z l I  

Using the properties of the Dirac delta function we write the final expression for the func- 
2) in the  following form: 

, ,  ( t -  M) (t, Mo) 
u J 4nr 

E ( t - -  r--- ) exp( - rc /2a)  dS 

tions ~m (m = i, 

X 

t - -r /c  
.f ~t  (~, M) exp [ - -  c 2 (t - -  ~),'2a] l i  [b l / ( t  - -  ~)2_ r2/ca] o 1 (t - -  x)~-- r2/& dxdS, (9) 

{ ~',, ( t - -  r/c, M) 
4ar 2 

q~.,(t, M o ) = - -  ((cos(MM o, n) E l - -  r exp(--rci2a) • 

1 (t - M) . I  as  (MMo, ,,) E t - -  ( M ) •  
4~rc at ] 4a& f 

{b l~ ] (t-~)2-r2/c2] --2 /,[b ]/(t--T)Z--r~/cZl } d~dS. ..,,, exp [-- & (l - -  T)/2a] 
( t  - -  "0 = - -  r=/ca [V ( t  - -  r )  z -  r~-/ca] 3 ( lO)  

The functions fix andq~a obtained in this way satisfy Eq. (I) and the initial conditions (2) 
and are smooth in domain D. In passing through the surface F the function ~,(t, M) remains 
continuous, but the functions ~=(t, M) and ~,(t, M)/~n have discontinuities whose magnitudes 
can be determined by taking the inverse Laplace transforms of Eqs. (4a) and (5a) 

a,~f (t, Mo) ~, (t, Mo) aqh (t, Mo) 
= : F  , Mo 6 F, (ga) On o 2 On o 

~p(t, M o)= + ~'~(t' M o) g~(t, Mo), M oEr,  (lOa) 
- - -  2 

where the plus and minus signs have their previous meanings. We call the functions ~z and 
~2 the single- and double-layer potentials for the telegraphers' equation (i). The volu~e 
potential in the three-dimensional case has the form 

%(t, M o) = . [ ~ J  F,3(t--r/c,4nr M) E ( t - -  r . . ) e x p ( - - r c / 2 a ) d V  " 

q_ _ _  
4~c t' 

t--?/C 

.f $3 (T, ,%4) exp [-- c z (t - -  x).2a] • 
0 

• I, [b | f ( t  - -  T) 2 -  rZ,"ca]//(t - -  ~)2_ ra/c 2 d~dV. ( n )  

Within the domain of integration the volume potential (ii) satisfies the inhomogeneous tele- 
graphers ' equation 

A$~ q- d~3. 1 ~q~3 1 a q ) - - 3  - - ~ 3  ( t ,  M o ) ,  (12) 
c a at 2 a at 

and outside the domain of integration it satisfies the homogeneous equation (i). 

The potentials introduced consist of two terms, one of which describes an undistorted 
wave propagation process with damping, and the second a distorted diffuse track which remains 
in the medium when the wave passes through. In the limit a § =, d § 0 the potentials (9)- 
(ii) are transformed into corresponding wave potentials [3]. In the other limiting case 
c -~ =, d -~ 0, Eqs. (9)-(11) are transformed into heat potentials [3]. To prove this it is 
necessary to use the leading terms in the asymptotic expansions of Io and I, and the inequal- 
ity (t -- z) >> r/c as c § =. The potentials (9)-(11) can he used to solve various kinds of 
heat-conduction problems for the hyperbolic equation. The problem for the telegraphers' 
equation (i) with nonzero initial conditions can be reduced in the usual way to a problem 
with zero initial conditions (2) [3, 6]. 
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Method of Integral Equations for Internal Boundary-Value Heat-Conduction Problem S. In 
accord with the Vernotte--Lykov hypothesis we assume that the heat-conduction process is des- 
cribed by a hyperbolic equation with constant coefficients and a heat source Q which depends 
on coordinates and time. In generalized variables Fo = at/Z ~, R = r/Z, it has the form 
[7, 8] 

~u Ou 
--7 2 + A u + Q * =  0, MoED, (13) 

0 Fo ~ 0 Fo 

l~ [ y 2 c)Q(F~ M~ ] (13a) 
Q* (Fo, M~ = - f -  Q (Fo, Mo) + a Fo " 

Here the dimensionless quantity y - a/Zc is the reciprocal of the velocity of propagation of 
heat in the body. The heat flux q(Fo, Mo) in domain D is related to the temperature by the 
expression [7, 8] 

Oq ~" Vu. (14) 
~ ~-~o + q = - -  T 

We assume that zero initial conditions are satisfied in domain D 

u (0, Mo) = Ou (0, Mo)/a Fo = O. (15) 

In formulating boundary-value heat-conduction problems for domain D with boundary F, one of 
the following three boundary conditions must be specified: 

u (Fo, Mo) = u o (Fo, Mo), M o 6 F, 

q (Fo, Mo) = qo (Fo, Mo), M o 6 F, 

q (Fo, Mo) = ct [% (Fo, Mo) - -  u (Fo, Mo) 1, M o E F. 

(16) 

(17) 
(18) 

Here uo is the temperature of the medium, qo is the external heat source, and u is the con- 
stant heat-transfer coefficient at the boundary r. 

We introduce the operators K,o and Kao corresponding to the wave process of heat 
propagation with damping. 

K,o,=l [~ ,(~o--vR, M) e(Vo-vm ~p(-R/2v),~s, 
r 4~R 

K,o, =]~ cos (M,~o, n) E (Fo--  ~'R) exp(-- R/2y)x 
F 

(19) 

• {* (Fo --4~R 2YR' M) -+ 4~R7 a* (FOB--Fo1'R, M) } dS, 

and the operators K** and K2, which describe a diffuse track in the medium 

Fo 

l ~)" E (Fo - -  ?R) .f * (Fo'. M) E (Fo- -  Fo' - -  YR) • 
K . ~  = 8~---y- __ o 

, Ly- r I ] 
I ,  I ~-~-, V(Vo--Fo') ' - -v2R " 

X exp [ - -  tFo - -  Fo')/2? 2] d Fo' dS. 
V(vo - Fo')~ - v 'm  

l ~" ~ Fo 
K-~,* = ~ ~r 1 R cos ( M M  o, n) E (Fo - -  ?R) j" $ (Fo', M) X 

0 

(20) 

x E ( F o -  F o ' -  yR)exp [ - - ( F o -  Fo')/272] l +  I~ [ +  ] / ( F o -  Fo') 2 -  72R2] - 

2?2 

- 2v F ~ = ~ = ~2 } (Fo - -  Fo')2-- ~ m  
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In terms of these operators the single- and double-layer potentials are 

~, (Fo, Mo) = K,0~, + Kn~t, 

% (Fo, Mo) = Kzo~z .- KaaP'~. 

(21) 
(22) 

In generalized variables the volume potential (ii) for Eq. (13) takes the form 

% (Fo, Mo) = 12 J'~5 Q* ( F o - -  %'R, M) E ( F o - -  ?R) exp (--  R/2V) dV + 
o 4,nR 

t2 e(Vo_  foQ, Vo ,, x 
8n? n ~ o 

1 
It 1-~-~2 V ( F o - - F o ' )  z -  ?ZRZ] 

, z d Fo' dV. >" exp [--(Fo--  Fo )/27 l I / (F ~ __ Fo,)2 __ 7ZRZ 
(23) 

We seek the solution of the first boundary-value problem as a sum of double-layer and 
volume potentials, i.e., u = ~a(Fo, Mo) + ffs(Fo, Mo). Taking account of (lOa), boundary 
condition (16) leads to the following equation for ~a(Fo, Mo): 

~2 (Fo, Me) + 2K2o~2 + 2Kzi~z = 2Uo (Fo, Mo) - -  2% (Fo, Mo), M o E F. (24) 

We seek the solution of the second boundary-value problem as a sum of single-layer and volume 
potentials, i.e., u = ~,(Fo, Mo)+ ~s(Fo, Mo). The boundary condition (17) can be replaced 
by the equivalent but more convenient form 

Ou ff~o, Mo) = ~z Oqo , 
-1 On o O Fo ~- q0, M0 6 F. (17a) 

Taking  a c c o u n t  of  Eq. (9a) ,  b o u n d a r y  c o n d i t i o n  (17a) l e a d s  to  an e q u a t i o n  o f  t he  second  k ind  
for ~,(Fo, M,): 

xh(Vo, Mo)--2/~2o*z--2/~2,r = - - 2  qo2~ _ 2 7 z  0Fo0% , 12 0no0% , ,%4oEF. (25) 

In Eq. (25) the operators Kao and Kaa differ from the operators Kao and Kax only in that the 
---+ -.+ 

angle (MMo, n) between the vector MMo and the inward normal n to the boundary F at the point 

M is replaced by the angle (MoM, no) between the vector MoM from point Mo to point M and the 
inward normal no at point Mo of the boundary F. 

We seek the solution of the third boundary value problem as the sum of single-layer and 
volume potentials, i.e., u = ~x (Fo, Mo) + ~n(Fo, Mo). By differentiating Eq. (18) with re- 
spect to Fo and using (14) we reduce the third boundary condition of (18) tO the more con- 
venient form 

Ou (Fo, Mo) Bi [u o (Fo, Mo) - -  u (Fo, Mo)] .--  7 -0 Bi [ Ou~ (Fo, Mo) Ou (Fo, Mo) ] = 0, M o 6 F. (26) 
On ~ [. O Fo 0 Fo 3 

When (9a) is taken into account, (26) leads to the following equation for ~x: 

i 

~, (Fo, Mo) - -  2l [K;o+/(2t] *, - -  2 Bi [K~o -- K,,I q:, - -  

0 
- -  2 2 2  Bi [Kio*t + K.qh] = 2 Bi [% (Fo, Mo) - -  u o (Fo, Mo)] 

a Fo 

I a% (v o, M.) Mo) J ,  2 0% (Vo, Mo> MoC r. 
0 Fo 0 Fo J On o ' L 

(27) 

Equations (24), (25), and (27) are the same type of integrodifferential equations of the 
second kind for the unknown function in which the derivative of the unknown function enters 
under the integral sign. They can be solved by methods usually applicable to integral equa- 
tions, such as iteration, expansion in terms of a small parameter, etc. The process of the 
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gradual propagation of a thermal field in space and time and the process of attenuation of 
a propagating wave appreciably simplify the numerical solution of Eqs. (24), (25), and (27). 

The method of potentials described is easily extended to domains having several bounda- 
ries. In addition it can be used to solve external boundary-value problems and linear in- 
verse boundary-value heat-conductlon problems. Let us apply the potential method to solve 
the last problem, which has the following mathematical formulation. In domain D, (DcD,) 
with boundary F, find the solution of Eq. (13) with the initial conditions (15) in which 
temperature (or heat flux) transducers are placed on the boundary r of domain D, which is a 
subdomain of D,. In this case one of the following conditions of measurement is satisfied: 

u (Fo, Mo) = Uo (Fo, Mo), Mo 6 F, (28a) 

q (Fo, Mo) = qo ~o, Mo), M o 6 F (28b) 

These conditions can be satisfied in practice by measuring the temperature (or heat flux) at 
a finite number of points on the surface r and using some interpolation process to construct 
the function uo(Fo, Mo) or qo(Fo, Mo) over the whole surface. This function will describe 
the true temperature distribution (or heat flux) on P approximately. By solving the direct 
boundary value problem in domain D with boundary condition (28a) or (285) we determine the 
temperature u and the derivative 8u/Sn in domain D and on its boundary. We find the tempera- 
ture u in domain DI --D which satisfies Eq. (13) and the initial conditions (15) by solving 
the problem of continuing the temperature distribution into the exterior of domain D by 
means of the temperature and the derivative 8u/~n specified on the boundary P of domain D 

u (Fo, Mo) = u o (Fo, Mo), M o 6/ ' ,  
(29) 

Ou (Fo, Mo)/On o = u~ (Fo, Mo), M o 6 F. 

We seek the solution of this problem as the sum of the volume potential in domain D, -- D 
and two single-layer potentials. Instantaneous point sources of the first of these are 
placed on the surface F of domain D with a density ~a(Fo, M), and sources of the second are 
placed on the surface F, with a d@nsi~y.~=(Fo, M). Dgn@ting the operators K,o, K**, Kao, 
and Ka, for the surface F, b y  K,t~ ), K}, a), Kz(:), and K~ ), we have 

- ,~.(~) 
tt (Fo, Mo) = % (Fo, Mo? --' (K,o + K,)  ~, + (.'X,o + K~]') ~z. (30) 

By using (ga) we satisfy boundary conditions (29). As a result we obtain a single integro- 
differential equation for the two unknown functions ~, and 4z which is of the type considered 
above  

2 ~ ) , , ,  , o~-~2>.,. = u l ( F o ,  M o) aq~s(F~ M~ " Mo6["  (31) ~l(Fo, Mo) + 2~2o~1 + 2/~1~, + ,,2o~z "r,~,~2, ~z 
On o 

and one integral relation 

t u o (Fo, Mo) % (Fo. Mo - r  (K,o v-/(t,) ~t + ,,,.~2> = t",ao + K~ )) ~a, MoEF (32) 

To solve a linear inverse boundary-value heat-conductlon problem it is necessary to know the 
value of y, which corresponds to the existing velocity of propagation of heat in the body. 
It can be determined experimentally [i]. Equations (31) and (32) can be solved by the 
methods used in solving (24), (25), and (27). 

By integrating the potentials introduced once or twice with respect to coordinates, two- 
dimensional or one-dimensional potentials can be obtained for the telegraphers' equation (i). 
In addition, the potentials introduced can be generalized to the case of several domains, 
permitting the solution of direct and inverse heat-conduction problems for such domains. The 
potentials for Eq. (i) can also be used to solve other inverse heat-conduction problems. 

NOTATION 

~, thermal conductivity; a, thermal dlffuslvity; c, velocity of propagation of heat; p, 
Laplace variable; ~(t), Dirar delta function; Io, I,, Bessel functions of the first kind of 
imaginary argument; E(z), Heavislde unit function; ~, characteristic dimension of body; Bi, 
Blot number; Fo, Fourier number; y, dimensionless quantity, reciprocal of velocity of propa- 
gation of heat. 
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STEADY-STATE HEAT CONDUCTION IN tOMPOSITE SYSTEMS WITH 

BOUNDARY CONDITIONS OF THE FOURTH KIND 

V. A. Datskovskli and A. N. Yakunin UDC 536.24.02 

A method is proposed for solving steady-state heat-conductlon problems in a sys- 
tem of contacting regions, and examples are presented to illustrate its effective- 
ness. 

As high-temperature thermal physics develops, problems of determining temperature dis- 
tributions in systems of contacting bodies become more and more important [i]. We present 
a method for solving steady-state heat-conduction problems with matching boundary conditions 
based on the application of well-developed methods of solving elliptic differential equa- 
tions in regions with piecewlse homogeneous media [2, 3] and mathematical optimization 
methods (Hooke, Rosenbrock) [4]. 

The method involves the following steps. 

i. A mathematical statement of the problem of determining the temperature distribution 
in a system of N contacting bodies is formulated. 

2. Boundary conditions of the fourth kind on interfaces Sij between the i-th and j-th 
regions of the original problem are replaced by boundary conditions of the second kind 

av~ I = q~ (Sij) 
t i  - -~n -  s i j  

OU I 

ql (So)  ~--" - -  qj (Sij), 

(1) 

where qi(Sij) and qj(Sij ) are unknown heat flux distribution functions on the boundary Sij 
between the i-th and J-th regions. In this way the original boundary-value problem for de- 
termining the temperature distribution in the system is separated into N independent problems. 

3. It is assumed that the functions qi(Sij) can be expressed by polynomials or step 
function representations by using one of the known methods of constructing a solution in 
each region. The solutions obtained in this way are parametrically dependent on the coeffi- 
cients Qik which appear in the functions qi(Sij) and also on the constants C i for an internal 
Neumann problem. 

Translated from Inzhenerno-Fizicheskll Zhurnal, Vol. 36, No. i, pp. 147-151, January, 
1979. Original article submitted January 2, 1978. 
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